Wspólnym pierwiastkiem równań ((x^2-1)(x-10)(x-5)=0) oraz (frac{2x-10}{x-1}=0) jest liczba: (-1) (1) (5) (10) Rozwiązanie: Pierwiastkiem równania jest liczba, która jest po prostu rozwiązaniem danego równania. Po podstawieniu takiej liczby równanie uznaje się za spełnione, czyli prawdziwe. Krok 1. Wskazanie
Równania - wprowadzenie. Z tej playlisty dowiesz się, co to jest równanie, jak opisać sytuację na wadze w postaci równania i odwrotnie, jak rozwiązywać równania z dodawaniem i odejmowaniem, jakie zastosowanie mają równania w geometrii oraz jak rozwiązywać zadania z treścią wykorzystując równania. OBEJRZYJ FILMY.
Wówczas powiemy, że liczba x spełnia równanie lub x jest rozwiązaniem równania. Rozwiązując równanie liniowe próbujemy doprowadzić do sytuacji, w której niewiadoma znajdzie się po lewej stronie, a prawa strona będzie zawierała tylko znane liczby .
Rozwiązaniem równania 0,1x ? 0,1 = 0,01x ? 1 jest: x =1 x = 10 x = -10 jest to równanie tożsamościowe: 4. Rozwiązaniem równania jest: x = 0,5 x = 0,25 x = 1 jest to równanie sprzeczne: 5. Liczba o 20% większa od liczby x jest równa 288. Liczba x to: 230,4 1440 287,8 240: 6. Narysowany trójkąt jest równoramienny. Oblicz długość
A. Rozwiązaniem równania jest liczba 3. P F B. Rozwiązaniem równania jest liczba 2. P F 10.1 p. Zaznacz poprawne dokończenie zdania. Jeżeli 2, to m równa się A. 7 B. C. 21 D. 3 11.1 p. Zaznacz poprawne dokończenie zdania. Równaniem równoważnym do równania 3(x – 2) = 2x – 5 jest równanie A. x – 2 = 5 B. x – 2 = –5
Zadanie 4: Matematyka wokół nas 6 - strona 47. Aby sprawdzić, która z podanych liczb jest rozwiązaniem równania, należy wstawić daną liczbę w miejsce niewiadomej i sprawdzić, czy lewa strona równania jest równa prawej. Chcemy sprawdzić, która z liczb 3, 5, 6, 8 spełniają równania. Zatem liczba 3 nie jest rozwiązaniem tego
. Zadanie 1. Wyznacz liczbę x, której 2,5% jest równe 40. Zadanie 2. Wyznacz liczbę x, wiedząc, że 4^{log_2x} =25. Zadanie 3. Wiadomo, że log_97=a. Oblicz log_781. Zadanie 4. Rozwiąż równanie |\frac{1}{2}x−4|=2. Zadanie 5. Dane są przedziały: A=(-4,0), B= . Wyznacz przedziały A∩B oraz A\B. Zadanie 6. Towar kosztuje k złotych. Oblicz, ile będzie kosztował ten towar po dwukrotnej dwudziestoprocentowej obniżce. Zadanie 7. Wyznacz liczbę x^{−2}, jeśli wiadomo, że x =\frac{16^{\frac{1}{4}}+3^{−1}}{4}. Zadanie 8. Wykaż, że liczba x jest naturalna, jeśli x = √5− √((1−√5)^2 ). Zadanie 9. Wykaż, że log_ab=−log_{\frac{1}{a}}b. Zadanie 10. Przedstaw liczbę a = √(29−12√5) w postaci x+y√5, gdzie x i y są liczbami wymiernymi. Zadanie 11. Średnia arytmetyczna liczb x, y, z jest równa 5. Oblicz średnią arytmetyczną liczb 2x, 2y, 2z. Zadanie 12. Podaj przykład dwóch liczb naturalnych dodatnich a, b, takich, że: \frac{4}{13}< \frac{a}{b} < \frac{5}{13}. Zadanie 13. Oblicz wartość wyrażenia W=x^3−x^2 dla x=2+√3. Zadanie 14. Uzasadnij, że dla dowolnej liczby całkowitej m liczba m^3−m jest podzielna przez 3. Zadanie 15. Liczby x i y przy dzieleniu przez 5 dają resztę 1. Uzasadnij, że iloczyn tych liczb przy dzieleniu przez 5 dla resztę 1. Sprawdź również:Zadania otwarte
równania i nierówności hihotka: Liczba a jest rozwiązaniem równania (2−x)2−√5=(x−1)(x−5), zaś liczba b jest rozwiązaniem równania x√5=x+2. sprawdź, czy liczby a i b są równe 15 lis 12:13 hihotka: pomocy 15 lis 12:23 Kasia: (2−x)2 − p5 15 lis 12:29 hihotka: √5+1 w książce jest rozwiązanie a=b= 2 15 lis 12:33 Godzio: spróbuj tak: (2−x)2−√5−(x−1)(x−5)=0 x√5−x−2=0 (2−x)2−√5−(x−1)(x−5)=x√5−x−2 15 lis 12:35 Godzio: albo oblicz to i to 15 lis 12:36 Godzio: 4−4x+x2−√5=x2−5x−x+5 /−x2 / +√5 /+6x 2x=1+√5 15 lis 12:38 Godzio: x√5−x=2 x(√5−1)=2 2 x= usuwamy niewymiernosc √5−1 2√5+2 2√5+2 √5+1 x=== 5−1 4 4 15 lis 12:40 Kasia: (2−x)2 − √5 = (x−1)(x−5) = = 4+x2 − √5 = x2 − 5x −x+5= =4+x2 − √5 = x2 − 6x +5=|−x2 =4 − √5 = −6x+5=|−5 =−1 − √5 = −6x = =−1 − 2,24 = −6x= =−3,24 = −6x|:−6 = 0,54 = x x√5 = x+2= =0,54*2,24 = 0,54 +2 =1,21= 2,54 a nie równa się b 15 lis 12:40 15 lis 12:40 Nikka: pozostaje rozwiązać oba równania: 1. 4 − 4x + x2 − √5 = x2 − 6x + 5 4 − 4x − √5= −6x + 5 2x = 1+√5 2. x√5 − x = 2 x(√5−1) = 2 2 √5+1 x=} * √5−1 √5+1 a=b 15 lis 12:44 hihotka: dziękuje wam 15 lis 13:03
zapytał(a) o 12:12 Liczba a,dla której rozwiązaniem równania 2(x-a)+5=3x-1 jest liczba x=5 wynosi: D. 0 Odpowiedzi 2(x-a)+5=3x-1 dla x=5 2(5-a)+5=3*5-1 10-2a+5=15-1 -2a=14-10-5 -2a=4-5 -2a=-1/:(-2) a=1/2 a=0,5 C 2(5-a)+5=3*5-1 10-2a+5=14 -2a=14-10-15 -2a=-1/:(-2) a= _Cyryl odpowiedział(a) o 14:56 blocked odpowiedział(a) o 12:17 Do równania za x podstawiamy 5 i mamy 2(5-a)+5=3*5-1 15-2a=14 2a=1 a=1/2=0,5 Odpowiedź C jest poprawna. Uważasz, że znasz lepszą odpowiedź? lub
Każde równania różniczkowego (ZDALNEGO sterowania), poza poszukiwanej funkcji i argumentu zawiera w sobie pochodne tej funkcji. Różnicowanie i integracja są odwrotność operacji. Dlatego proces rozwiązania (ZDALNEGO sterowania), często nazywany jego oceną pobranego, a samo rozwiązanie – całką. Nieokreślone całki zawierają dowolne stałe, więc ZDALNEGO sterowania zawiera również stałe, a samo rozwiązanie, określoną z dokładnością do stałych, jest wspólne. Instrukcja Ogólne rozwiązanie ZDALNEGO sterowania dowolnej kolejności stanowić absolutnie żadnego powodu. Ono powstaje sama z siebie, jeśli w trakcie jego otrzymania nie były używane początkowe lub brzegowe warunki. Inna sprawa, jeśli niektóre rozwiązania nie było, a oni byli wybierani według określonych algorytmów, uzyskanym na podstawie teoretycznych informacji. Tak właśnie się dzieje, jeśli chodzi o liniowych ZDALNEGO sterowania przy stałym kursie n-go rzędu. Liniowe jednorodne ZDALNEGO sterowania (ЛОДУ) n-go rzędu ma postać (patrz rys. 1).Jeśli jego lewą część oznaczyć jako liniowy operator różnicowy L[y], to ЛОДУ перепишется w postaci L[y]=0 i L[y]=f(x) – dla liniowego niejednorodnego równania różnicowego (ЛНДУ). Jeśli szukać rozwiązania ЛОДУ w postaci y=exp(k•x), y’=k•exp(k•x), y=(k^2)•exp(k•x), …, y^(n-1)=(k^(n-1))•exp(k•x), y^n=(k^n)•exp(k•x). Po redukcji na y=exp(k•x), dochodzimy do równania: k^n+(a1)k^(n-1)+…+a(n-1)•k+an=0, zwanego charakterystycznym. To proste równanie algebraiczne. Tak więc, jeśli k – pierwiastek równania charakterystycznego, to funkcja y=exp[k•x] – rozwiązanie ЛОДУ. Równanie algebraiczne n-stopnia ma n korzeni (z uwzględnieniem wielokrotności i kompleksowych). Każdemu realne źródła ki wielości „jeden” odpowiada funkcja y=exp[(ki)x], więc, jeśli wszystkie są prawidłowe i są różne, to biorąc pod uwagę fakt, że dowolna liniowa kombinacja tych wystawca też jest rozwiązaniem, można uzyskać ogólne rozwiązanie ЛОДУ: y=C1•exp[(k1)•x]+ C2•exp[(k2)•x]+…+Cn•exp[(kn)•x]. W ogólnym przypadku, wśród rozwiązań równania charakterystycznego mogą być prawdziwe wielokrotności i kompleksowo powiązane korzenie. Podczas tworzenia wspólnego rozwiązania w wyznaczonym sytuacji ograniczać sobie ЛОДУ drugiego rzędu. Tutaj możliwe jest uzyskanie dwóch korzeni równania charakterystycznego. Niech to będzie kompleksowo dopasowana para k1=p+i•q i k2=p-i•q. Zastosowanie wystawców z takimi wynikami da kompleksowo-cyfrowe funkcje w pierwotnym równaniu z rzeczywistymi współczynnikami. Dlatego ich przekształcają się według wzoru Eulera i prowadzą do myśli y1=exp(p•x)•sin(q•x) i y2=exp(p•x)cos(q•x). W przypadku jednego rzeczowe korzenia krotności r=2 używają y1=exp(p•x) i y2=x•exp(p•x). Ostateczny algorytm. Chcesz uzyskać ogólne rozwiązanie ЛОДУ drugiego rzędu y”+a1•y’+a2•y= charakterystyczna równanie k^2+a1•k+a2= to ma rzeczywiste korzenie k1?k2, to jego ogólne rozwiązanie wybierz w postaci y=C1•exp[(k1)•x]+ C2•exp[(k2)•x].Jeśli istnieje jeden ważny pierwiastek k, wielość r=2, y=C1•exp[k•x]+ C2•x•exp[k2•x]=exp[k•x](C1+ C2•x•exp[k•x]).Jeśli jest kompleksowo dopasowana para korzeni k1=p+i•q i k2=p-i•q, to odpowiedź zapisz w postaci y=C1•exp(p•x)sin(q•x)++C2•exp(p•x)cos(q•x). Należy zwrócić uwagę Wiadomo, że ogólne rozwiązanie ЛНДУ L[y]=f(x) jest równa sumie wspólnego rozwiązania ЛОДУ i prywatnej decyzji ЛНДУ. Tak jak prywatne znaleziono rozwiązanie, to zawarte metody można użyć do sporządzenia wspólnego rozwiązania ЛНДУ. Powiązane artykuły
breti Użytkownik Posty: 148 Rejestracja: 7 gru 2011, o 18:40 Płeć: Kobieta Podziękował: 40 razy rozwiązaniem równania jest Rozwiązaniem równania : \(\displaystyle{ 2x+4+ \frac{8}{x} +........= \lim_{ n\to \infty } \frac{5-16n}{3n+1}}\) jest: a) \(\displaystyle{ x=-4}\) b) \(\displaystyle{ x= \frac{4}{3}}\) c) \(\displaystyle{ x=4}\) d) \(\displaystyle{ x=- \frac{4}{3}}\) ??? Dasio11 Moderator Posty: 9828 Rejestracja: 21 kwie 2009, o 19:04 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 38 razy Pomógł: 2230 razy rozwiązaniem równania jest Post autor: Dasio11 » 30 gru 2011, o 09:58 Ile równa się wyrażenie po lewej stronie i przy jakich założeniach? Jaka liczba stoi po prawej stronie równania? breti Użytkownik Posty: 148 Rejestracja: 7 gru 2011, o 18:40 Płeć: Kobieta Podziękował: 40 razy rozwiązaniem równania jest Post autor: breti » 30 gru 2011, o 14:14 no właśnie ja tego w ogóle nie rozumiem. Nie wiem od czego zacząć, co z tym zrobić i dlaczego ;/ Tmkk Użytkownik Posty: 1725 Rejestracja: 15 wrz 2010, o 15:36 Płeć: Mężczyzna Lokalizacja: Ostrołęka Podziękował: 59 razy Pomógł: 501 razy rozwiązaniem równania jest Post autor: Tmkk » 30 gru 2011, o 14:25 Najpierw musisz policzyć prawą stronę, czyli granicę ciągu. Bez tego dalej nie da rady. breti Użytkownik Posty: 148 Rejestracja: 7 gru 2011, o 18:40 Płeć: Kobieta Podziękował: 40 razy rozwiązaniem równania jest Post autor: breti » 30 gru 2011, o 14:34 czyli że granica dąży do \(\displaystyle{ - \infty}\) ? To jest granica? -- 30 gru 2011, o 14:36 -- czy tez do -6?-- 30 gru 2011, o 14:45 --czy tez granicą jest może liczba \(\displaystyle{ - \frac{16}{3}}\) czyli \(\displaystyle{ -5 \frac{1}{3}}\)?? Tmkk Użytkownik Posty: 1725 Rejestracja: 15 wrz 2010, o 15:36 Płeć: Mężczyzna Lokalizacja: Ostrołęka Podziękował: 59 razy Pomógł: 501 razy rozwiązaniem równania jest Post autor: Tmkk » 30 gru 2011, o 14:56 Tak, granica to \(\displaystyle{ - \frac{16}{3}}\). Aby ta granica była sumą tego szeregu, musi on być zbieżny. Znasz warunek, ktory musi zajść, aby szereg geometryczny był zbieżny? breti Użytkownik Posty: 148 Rejestracja: 7 gru 2011, o 18:40 Płeć: Kobieta Podziękował: 40 razy rozwiązaniem równania jest Post autor: breti » 30 gru 2011, o 16:20 nie bardzo:/
wiadomo że liczba a jest rozwiązaniem równania